公司产品系列

Product range

咨询热线:

0519-13961410015

产品中心/ PRODUCTS

我的位置:首页  >  产品中心  >  一体化污水处理设备  >  一体化废水处理设备  >  昆山一体化污水处理设备 质量有保障

昆山一体化污水处理设备 质量有保障

  • 产品型号:
  • 更新时间:2024-04-22

简要描述:昆山一体化污水处理设备 质量有保障臭氧氧化法在国外应用较多,ZimaS.V.等人总结出了印染废水臭氧脱色的数学模式。研究表明,臭氧用量为0.886gO3/g染料时,淡褐色染料废水脱色率达80%;研究还发现,连续运转所需臭氧量高于间歇运行所需臭氧量,而反应器内安装隔板,可减臭氧用量16.7%。因此,利用臭氧氧化脱色,宜设计成间歇运行的反应器,并可考虑在其中安装隔板。

产品详情

昆山一体化污水处理设备 质量有保障

一、纺织印染废水

纺织印染废水主要是原料蒸煮、漂洗、漂白、上浆等过程中产生的含天然杂质、脂肪以及淀粉等有机物的废水。印染废水是洗染、印花、上浆等多道工序中产生的,含有大量染料、淀粉、纤维素、木质素、洗涤剂等有机物,以及碱、硫化物、各类盐类等无机物,污染性很强。

二、印染污水的特性

1、纺织印染行业是工业污水排放大户,污水中主要含有纺织纤维上的污物、油脂、盐类以及加工过程中附加的各种浆料、染料、表面活性剂、助剂、酸碱等。

2、废水特点是有机物浓度高、成分复杂、色度深且多变,pH变化大,水量水质变化大,属难处理工业废水。随着化学纤织物的发展,仿真丝的兴起和印染后整理要求的提高,使PVA浆料、人造丝碱解物、新型染料、助剂等难降解有机物大量进入纺织印染废水,对传统的废水处理工艺构成严重挑战,COD浓度也从原来的数百毫克每升上升到3000~5000mg/L。

3、浆染废水色度高、COD高,特别是根据国外市场开发出来的丝光蓝、丝光黑、特深蓝、特深黑等印染工艺,该类印染大量使用硫化染料、印染助剂硫化钠等,因此废水中含有大量的硫化物,该类废水必须加药预处理,然后再进行系列化处理,才能稳定达标排放。漂染废水中含有染料、浆料、表面活性剂等助剂,该类废水水量大,浓度和色度均较低,如果单纯采用物化处理,则出水也在100~200mg/L之间,色度也能以满足排放要求,但污染量大大增加,污泥处理的费用较高,容易造成二次污染,在环保要求较严的情况下应充分考虑生化处理系统,常规的强化生物处理工艺可以满足处理要求。

三、化学处理方法

1、混凝法

主要有混疑沉淀法和混疑气浮法,所采用的混疑剂多半以铝盐或铁盐为主,其中以碱式氯化铝(PAC)的架桥吸附性能较好,而以。国外采用高分子混疑剂者日益增加,且有取代无机混疑剂之势,但在国内因价格原因,使用高分子混疑剂者还不多见。据报道,弱阴离子性高分子混疑剂使用范若与硫酸铝合用,则可发挥更好的效果。混疑法的主要优点是工艺流程简单、操作管理方便、设备投资省、占地面积少、对疏水性染料脱色效率很高;缺点是运行费用较高、泥渣量多且脱水困难、对亲水性染料处理效果差。

2、氧化法

臭氧氧化法在国外应用较多,ZimaS.V.等人总结出了印染废水臭氧脱色的数学模式。研究表明,臭氧用量为0.886gO3/g染料时,淡褐色染料废水脱色率达80%;研究还发现,连续运转所需臭氧量高于间歇运行所需臭氧量,而反应器内安装隔板,可减臭氧用量16.7%。因此,利用臭氧氧化脱色,宜设计成间歇运行的反应器,并可考虑在其中安装隔板。臭氧氧化法对多数染料能获得良好的脱色效果,但对硫化、还原、涂料等不溶于水的染料脱色效果较差。从国内外运行经验和结果看,该法脱色效果好,但耗电多,大规模推广应用有一定困难。光氧化法处理印染废水脱色效率较高,但设备投资和电耗还有待进一步降低。

印染废水的常规处理方法一般分为生化+物化和物化+生化两大类处理工艺,但由于缺少水解酸化单元,实际运行中存在好氧生化单元反应不,导致后续物化处理费用偏高的问题。在传统的好氧生物处理装置前增加水解酸化处理的“水解+好氧"串连工艺,可以使印染废水中难以降解的有机物进行水解,生成为较易生物降解的物质,改善废水的可生物降解性,从而提高传统流程的COD去除率。目前国内许多新建的印染废水处理装置(包括生活污水和印染废水集中处理)均采用由这一工艺开发的“水解一好氧"生物处理工艺,已取得了明显的环境效益和经济效益。

印染工艺的四个工序都有废水排放,预处理阶段(包括烧毛、退浆、煮炼、漂白、丝光等工序)排出的退浆废水、煮炼废水、漂白废水、丝光废水;染色工序排出的染色废水;印花工序排出的印花废水、皂液废水;整理工序排出的整理废水。印染废水是上述各类废水的混合废水,或者除漂白废水以外的综合废水。

四、厌氧水解

染料是一种难降解的合成有机物,其分子结构中主要含有难以生物降解的吸引电子基团——偶氮基等。如果能够脱除分子结构上的吸引电子取代基,使电子双链等断开,则后续的生物降解会很容易,且染料分子也失去了发色基团。水解酸化降解染料有机物和脱色的机理在于,利用水解酸化微生物的酶促作用打断偶氮基的电子双链。这种生物降解过程需要多种酶的共同参与。水解过程中,水解污泥中生长的假单胞菌属、气单胞菌属、红螺菌属的细菌具有较好的脱色能力。混合菌群的脱色能力高于各单株菌,混合菌群依靠协同作用,使染料的降解更、脱色更。采用水解酸化处理,可以缓冲、降低原污水的pH值,增加污水中可溶性COD的比重,从而提高后续好氧处理的COD去除率,同时还可以缓冲、调节可能发生的冲击负荷影响,预防和克服后续活性污泥法处理过程中可能出现的污泥膨胀或丝状菌过量生长,增强处理系统运行稳定性和可靠性。

五、混凝气浮

印染废水可生化性较差,仅仅依靠生化处理一般难以达到排放要求。为确保最终出水稳定达标排放,同时为了防止生化系统意外情况的发生,在生化系统之后增加一段物化工艺。通过投加混凝剂或脱色剂,去除废水中残留的色度,另外还可将胶体物质转化为悬浮物,并连同废水中残余的较小和较轻的悬浮物一道从水中分离除去?此外还可去除部分菌体的代谢产物,保证最佳的处理效果。加药混凝之后的分离有沉淀和气浮两种,其中加压溶气气浮法对染色废水的处理有较好的脱色效果。此外,因气浮分离能力约为沉淀分离能力的4-5倍,可大大减小分离区的面积,节省大量投资,且分离效果稳定,不受外界环境的影响,故选择加压溶气气浮法做为物化处理的措施。

在一个月试验期间,虽然脱硫废水水质及水量有一定的波动(SS浓度的波动幅度最大,达到3800~31800mg/L),经一体化处理系统处理后,脱硫废水中的SS、COD、硫化物、总汞的浓度在出水中显著下降,并远优于《火电厂石灰石-石膏湿法脱硫废水水质控制指标》(DL/T997-2006)中的排放标准,实现脱硫废水长期、稳定的达标排放,并为废水的深度处理创造了条件。

4、与传统“三联箱"处理工艺的对比分析

4.1 优点

通过该脱硫废水一体化项目的工程实施与试运分析,相对于传统“三联箱"处理工艺,脱硫废水一体化处理工艺具有如下优点。

4.1.1 工艺流程短,现场操作简单

脱硫废水一体化处理工艺只需要加一种干粉药剂(经统计,试验项目中药剂吨水单位消耗量为0.452kg/t),大幅简化了加药系统和处理工艺流程,操作简单,易于掌握。

4.1.2 结构紧凑,适应能力强,处理效率高

脱硫废水一体化处理工艺采用了一体化的模块式设计,可以方便组合,满足不同装机容量火电机组对脱硫废水处理能力的要求。

4.1.3 项目占地面积小,基建投资较小

相对于相同处理能力下的“三联箱"系统,脱硫废水一体化处理工艺极大地降低占地面积,节省投资成本,缩减建设周期。

4.1.4 可方便地实现远程自动控制

由于废水一体化处理工艺的集成化、模块化设计,加药系统简单,从而较容易实现远程自动启停、监控、调节与故障判断分析,便于火电厂脱硫DCS系统集中控制。

4.1.5 相较于“三联箱"工艺,减少了渣浆量

作为废水的预处理工艺,脱硫废水一体化处理工艺可减轻除盐系统的负载,节约处理成本。

昆山一体化污水处理设备 质量有保障


4.2 不足

脱硫废水一体化处理工艺存在以下问题:所需药剂必须事先根据收集废水污染物成分数据进行配比试验,再根据最佳的处理效果确定药剂配方,故药剂的适应能力有一定局限。当电厂补充水及煤种变化较大时,需要适当调整药剂配方。

总之,通过项目实施与试运结果分析可知,相较于传统“三联箱"处理工艺,脱硫废水一体化处理系统具有工艺流程简单、建设工期短、设备可靠性好、处理效率高和便于实现自动控制的优点。

 由于膜的高效分离作用,分离效果远好于传统沉淀池,处理出水极其清澈,悬浮物和浊度接近于零,细菌和病毒被大幅去除,出水水质优于建设部颁发的生活杂用水水质标准(CJ25.1-89),可以直接作为非饮用市政杂用水进行回用。

  同时,膜分离也使微生物被被截流在生物反应器内,使得系统内能够维持较高的微生物浓度,不但提高了反应装置对污染物的整体去除效率,保证了良好的出水水质,同时反应器对进水负荷(水质及水量)的各种变化具有很好的适应性,耐冲击负荷,能够稳定获得优质的出水水质。

  2、剩余污泥产量少

  该工艺可以在高容积负荷、低污泥负荷下运行,剩余污泥产量低(理论上可以实现零污泥排放),降低了污泥处理费用。

  3、占地面积小,不受设置场合限制

  生物反应器内能维持高浓度的微生物量,处理装置容积负荷高,占地面积大大节省;该工艺流程简单、结构紧凑、占地面积省,不受设置场所限制,适合于任何场合,可做成地面式、半地下式和地下式。

  4、可去除氨氮及难降解有机物

  由于微生物被截流在生物反应器内,从而有利于增殖缓慢的微生物如硝化细菌的截留生长,系统硝化效率得以提高。同时,可增长一些难降解的有机物在系统中的水力停留时间,有利于难降解有机物降解效率的提高。

  5、操作管理方便,易于实现自动控制

  该工艺实现了水力停留时间(HRT)与污泥停留时间(SRT)的分离,运行控制更加灵活稳定,是污水处理中容易实现装备化的新技术,可实现微机自动控制,从而使操作管理更为方便。

  6、易于从传统工艺进行改造

  该工艺可以作为传统污水处理工艺的深度处理单元,在城市二级污水处理厂出水深度处理(从而实现城市污水的大量回用)等领域有着广阔的应用前景。

随着工业的发展,废水中铜、镉、锌、铅等重金属离子污染日益严重,这些不可生物降解的金属离子即使是低浓度也是有害的,可能导致人体感染和疾病。采用合适的吸附材料吸附金属离子是一种有效的方法,如活性炭吸附剂,碳纳米管吸附剂等。但活性炭低浓度时,吸附能力差,且再生困难;碳纳米管吸附剂虽然吸附效果好,但后处理困难,会增加成本,产生新的污染。

缩甲醛泡沫(PVF)是(PVA)与甲醛的重要缩合产物,具有丰富的开孔结构,较好的力学强度和耐磨性,耐候性及生物相容性好,因此在诸多领域都有广泛的应用,如清洁材料、过滤材料、吸收剂和功能性医用材料等。壳聚糖是含多种螯合基的天然生物聚合物(如氨基、羟基、乙酰氨基),能通过螯合作用或离子交换作用除去废水中的金属离子及染料等有害物质。

本课题组对缩甲醛进行过深入研究,可以制备出微米级孔径的缩醛泡沫。在此基础上,如果在泡沫中引入壳聚糖制备复合泡沫,这种复合泡沫不仅具有泡沫材料的多孔结构,而且壳聚糖中的功能基团如氨基还能吸附金属离子,达到除去废水中重金属离子的目的。本文将壳聚糖引入到缩甲醛泡沫中,成功制备出基于缩甲醛的大孔吸附剂PVF-Cs,并详细研究了泡沫对Cu(II)和Pb(II)离子的吸附性能。该方法操作简便,吸附后处理简单,成本较低,可为进一步的工业废水处理提供理论依据和方法。

1、实验部分

1.1 原料

聚合度为(1700±5),醇解度为99%,中石化四川维尼纶厂;甲醛:分析纯,浓度为38%,成都贝斯特试剂厂;硫酸:分析纯,浓度为98%,成都科龙化工试剂厂;OP-10:分析纯,成都科龙化工试剂厂;壳聚糖:成都科龙化工试剂厂;Cu(NO3)2•3H2O、Pb(NO3)2:成都科龙化工试剂厂;HNO3、NaHCO3:成都科龙化工试剂厂;去离子水:自制。

1.缩甲醛-壳聚糖泡沫的制备

将60g的PVA颗粒置于540g水中,室温浸泡过夜后加热到90℃溶解6h,获得均相10%的PVA溶液。取60g上述PVA溶液置于三口烧瓶中,加入1.2g壳聚糖搅拌直至溶液变成淡黄色均匀溶液,然后加入27mL及6mL浓度为50%的硫酸溶液,搅拌均匀后再加入5mLOP-10乳化剂,将转速升到1200r/min,搅拌30min后将其转移至模具中,于65℃固化5h,即获得PVF-壳聚糖复合泡沫,简称为PVF-Cs泡沫。不加入壳聚糖在同等条件下制备的泡沫简称为PVF。

1.3 性能测试

1.3.1 傅里叶变换红外光谱(FT-IR)测试:采用美国Nicolet6700傅里叶变换红外测试仪(ThernoElectron公司,美国)进行测试。红外的测试范围为500~4000cm-1,分辨率为4cm-1,扫描次数为24。

1.3.2 元素分析(EA):采用意大利EuroEA3000型元素分析仪对泡沫进行N元素分析,并结合氨基显示反应确定氨基的成功引入。

1.3.3 扫描电子显微镜(SEM)观察:采用日本日立公司的S-3400型扫描电子显微镜观察PVF、PVF-Cs泡沫的断面形貌,其加速电压为15kV。

1.3.4 电感耦合原子发射光谱(ICP-AES)测试:采用美国的IRISADV型电感耦合原子发射光谱仪测试吸附前后溶液的离子浓度。

随着工业的发展,废水中铜、镉、锌、铅等重金属离子污染日益严重,这些不可生物降解的金属离子即使是低浓度也是有害的,可能导致人体感染和疾病。采用合适的吸附材料吸附金属离子是一种有效的方法,如活性炭吸附剂,碳纳米管吸附剂等。但活性炭低浓度时,吸附能力差,且再生困难;碳纳米管吸附剂虽然吸附效果好,但后处理困难,会增加成本,产生新的污染。

缩甲醛泡沫(PVF)是PVA)与甲醛的重要缩合产物,具有丰富的开孔结构,较好的力学强度和耐磨性,耐候性及生物相容性好,因此在诸多领域都有广泛的应用,如清洁材料、过滤材料、吸收剂和功能性医用材料等。壳聚糖是含多种螯合基的天然生物聚合物(如氨基、羟基、乙酰氨基),能通过螯合作用或离子交换作用除去废水中的金属离子及染料等有害物质。

本课题组对缩甲醛进行过深入研究,可以制备出微米级孔径的缩醛泡沫。在此基础上,如果在泡沫中引入壳聚糖制备复合泡沫,这种复合泡沫不仅具有泡沫材料的多孔结构,而且壳聚糖中的功能基团如氨基还能吸附金属离子,达到除去废水中重金属离子的目的。本文将壳聚糖引入到缩甲醛泡沫中,成功制备出基于缩甲醛的大孔吸附剂PVF-Cs,并详细研究了泡沫对Cu(II)和Pb(II)离子的吸附性能。该方法操作简便,吸附后处理简单,成本较低,可为进一步的工业废水处理提供理论依据和方法。

1、实验部分

1.1 原料:聚合度为(1700±5),醇解度为99%,中石化四川维尼纶厂;甲醛:分析纯,浓度为38%,成都贝斯特试剂厂;硫酸:分析纯,浓度为98%,成都科龙化工试剂厂;OP-10:分析纯,成都科龙化工试剂厂;壳聚糖:成都科龙化工试剂厂;Cu(NO3)2•3H2O、Pb(NO3)2:成都科龙化工试剂厂;HNO3、NaHCO3:成都科龙化工试剂厂;去离子水:自制。

1.2 缩甲醛-壳聚糖泡沫的制备

将60g的PV颗粒置于540g水中,室温浸泡过夜后加热到90℃溶解6h,获得均相10%的PVA溶液。取60g上述PVA溶液置于三口烧瓶中,加入1.2g壳聚糖搅拌直至溶液变成淡黄色均匀溶液,然后加入27mL及6mL浓度为50%的硫酸溶液,搅拌均匀后再加入5mLOP-10乳化剂,将转速升到1200r/min,搅拌30min后将其转移至模具中,于65℃固化5h,即获得PVF-壳聚糖复合泡沫,简称为PVF-Cs泡沫。不加入壳聚糖在同等条件下制备的泡沫简称为PVF。

1.3 性能测试

1.3.1 傅里叶变换红外光谱(FT-IR)测试:采用美国Nicolet6700傅里叶变换红外测试仪(ThernoElectron公司,美国)进行测试。红外的测试范围为500~4000cm-1,分辨率为4cm-1,扫描次数为24。

1.3.2 元素分析(EA):采用意大利EuroEA3000型元素分析仪对泡沫进行N元素分析,并结合氨基显示反应确定氨基的成功引入。

1.3.3 扫描电子显微镜(SEM)观察:采用日本日立公司的S-3400型扫描电子显微镜观察PVF、PVF-Cs泡沫的断面形貌,其加速电压为15kV。

1.3.4 电感耦合原子发射光谱(ICP-AES)测试:采用美国的IRISADV型电感耦合原子发射光谱仪测试吸附前后溶液的离子浓度。


在线咨询

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
版权所有©2024 常州天环净化设备有限公司 All Rights Reserved   
备案号:   sitemap.xml
技术支持:环保在线   管理登陆

扫码关注我们