产品中心/ PRODUCTS

我的位置:首页  >  产品中心  >  一体化污水处理设备  >  一体化废水处理设备  >  盐城一体化污水处理设备远程指导

盐城一体化污水处理设备远程指导

  • 产品型号:
  • 更新时间:2024-04-22

简要描述:盐城一体化污水处理设备远程指导湘钢采用脱硫废水配加固体氯化钙至喷洒烧结矿需要的浓度,攀钢采用脱硫废水配加高浓度氯化钙溶液至喷洒烧结矿需要的浓度,水钢采用膜浓缩脱硫废水后喷洒烧结矿,实践结果均表明:既可满足烧结矿低温还原粉化指标要求,又能节省大量的氯化钙药剂,是脱硫废水较好的处理方式。存在的主要问题是水量大、有氨异味。

产品详情

盐城一体化污水处理设备远程指导

硫酸盐型高盐废水一方面因其盐度较高,具有较大的渗透压,易使微生物细胞脱水死亡或受到抑制,进而影响生化系统的代谢活性;另一方面,在厌氧时,废水中的SO42-在硫酸盐还原菌(Sulfate Reducing Bacteria,SRB)的作用下产生HS-、S2-或H2S,硫化物具有较强生物毒性作用(尤其是呈分子态的硫化氢),极易抑制生化反应过程。因此,为更好地处理含硫酸盐废水,需明确硫酸盐含量对于生化系统的影响。本研究便从此点出发,拟设计不同组别的活性污泥有机物降解试验,重点研究硫酸盐含量对生化系统有机物降解及污泥生长的影响,并采用16SrRNA基因高通量测序方法,从活性污泥种群变化角度进行深入剖析,以期探明硫酸盐含量对于生化系统有机物降解过程及结果的影响,进而为此类废水的处理过程提供理论指导及借鉴。

1、材料与方法

1.1 实验材料

接种污泥:本研究选取富集培养后的市政污水厂消化污泥、安徽省某工业园区生化段污泥(该园区废水中含有较高含量的硫酸盐)进行不同浓度硫酸盐条件下的微生物降解试验。2HPO4:分析纯;葡萄糖C6H12O6:分析纯。以上药剂均购自国药集团化学试剂有限公司

1.2 不同浓度硫酸盐模拟废水配制

使用硫酸钠配制不同浓度的硫酸盐模拟废水,其pH调节至7~8,初始COD约为250mg/L,废水C:N:P为100:5:1。

由于湿法脱硫废水中和、絮凝沉降后回用存在系列问题,部分钢铁企业因无法接受脱硫废水回用存在的影响,因而结合烧结烟气二氧化硫浓度较低的实际情况,将脱硫工艺改为半干法。

随着电厂脱硫废水技术的研究和实施,钢铁企业在实施烧结烟气超低排放改造的同时,积极开展脱硫废水治理的研究,但目前真正能做到有效去除废水中的污染物和有害离子,达到废水达标排放回收利用的工艺几乎没有。

2、烧结脱硫废水的特点及治理难点

烧结脱硫废水呈弱酸性,盐含量较高,并含有悬浮物、COD、氨氮、多种重金属等污染物,很多是国家环保标准中严格要求控制的第一类污染物,其水质和水量因烧结生产原料及石灰石产地、脱硫吸收塔塔形、工艺补给水水质、操作条件不同存在差异,但基本具有以下主要特点:

(1)水量不大,根据烧结机面积不同废水量大小有差异,360m2烧结机脱硫废水量为5~8t/h。

(2)盐含量约1.5%~3%,主要离子为Ca2+、Mg2+、Cl-、F-、SO42-和SO32-等,属高盐废水。

(3)Cl-质量浓度较高(8000~12000mg/L),水处理单元设备腐蚀风险较高,且Cl-处理技术不成熟,处理费用特别昂贵。

(4)硬度较高,且含有大量的Ca2+、Mg2+,水处理单元结垢、堵塞风险较高。

(5)重金属离子种类繁多,含有汞、铅、锌、铬、镉、锰、铜等多种重金属离子和砷等。

(6)COD和氨氮的浓度较高,COD超标的主要原因是系统内的亚硫酸盐(连二硫酸盐)即BOD5低,COD高,B/C低,且存在重金属离子,故不宜采用生化方法处理。

3、烧结脱硫废水处理探讨

3.1 脱硫废水中可溶性盐的综合利用途径探讨

烧结矿表面喷洒氯化物,利用氯化物吸附在其表面并形成一层薄膜,在450~550℃时,对烧结矿中的赤铁矿与还原气体起到屏蔽作用,有效地改善烧结矿低温还原粉化性能,有利于炉况顺行,生产率提高,能耗降低。攀钢等长期采用喷洒氯化钙的措施改善烧结矿的冶金性能,攀钢某烧结企业2019年烧结矿喷洒质量分数为30%的CaCl2溶液10500t,则氯离子的总量为2014.86t。而脱硫废水排放量约720t/d,氯离子质量浓度约10000mg/L,按烧结机年作业时间350d计算,则脱硫废水排放氯离子总量为2520t,略高于实际喷洒氯离子总量。

湘钢采用脱硫废水配加固体氯化钙至喷洒烧结矿需要的浓度,攀钢采用脱硫废水配加高浓度氯化钙溶液至喷洒烧结矿需要的浓度,水钢采用膜浓缩脱硫废水后喷洒烧结矿,实践结果均表明:既可满足烧结矿低温还原粉化指标要求,又能节省大量的氯化钙药剂,是脱硫废水较好的处理方式。存在的主要问题是水量大、有氨异味。

针对脱硫废水替代氯化钙喷洒烧结矿降低低温还原粉化率的可行性,开展脱硫废水浓缩液喷洒烧结矿实验,实验情况如下:

在实验室将脱硫废水加热浓缩5倍得到浓缩液,将浓缩液和生产现场使用的CaCl2溶液进行喷洒烧结矿低温还原粉化率对比实验。对比实验样品为:样品1、样品2(现用CaCl2溶液);样品3、样品4(浓缩液);样品5、样品6(浓缩液加工业新水稀释至其中Cl-含量与使用的氯化钙溶液基本一致)。

浓缩减量主要分为热法浓缩和膜浓缩2种。热浓缩工艺主要有多效蒸发(MED)和机械蒸汽再压缩(MVR)工艺,蒸发器包括降膜蒸发器、升膜蒸发器、刮板式蒸发器等单程型蒸发器及多种循环性蒸发器。膜浓缩包括反渗透、电渗析、正渗透、膜蒸馏等,实际应用中主要以膜浓缩为主。但膜浓缩对进水水质要求较高,需对废水进行软化处理以及MF或UF、多介质过滤等精滤处理,同时大大增加了浓缩液中的钠离子浓度,若采用该浓缩液替代CaCl2溶液喷洒烧结矿,将对高炉耐火材料造成不良影响。

热法浓缩中的晶种法强制循环蒸发技术通过晶种和强制循环工艺控制结垢,脱硫废水不需化学软化及膜过滤等预处理,经絮凝沉降去除悬浮物后,直接进入晶种法强制循环蒸发系统,系统化学清洗周期达6个月以上。

(1)强制循环蒸发系统分为加热器和分离室2大部分。废水在加热器中被加热,在分离室中闪蒸。控制加热管内压力高于该温度下的饱和蒸汽压力,使废水在加热器中不沸腾、不发生浓度变化,即在换热管内不会析出新的晶体。同时废水采用大流量的强制循环泵送入加热器,使废水在换热管内以2~3m/s的高流速运行,进一步避免了换热管表面结垢的可能。加热后的浓水进入到分离室后,分离室压力骤然降低,浓盐水饱和温度下降,在此发生闪蒸,盐水实现浓缩。为了减少蒸发器结垢的情况,在分离室中注入硫酸钙晶种,分离室闪蒸析出的硫酸钙晶体优先附着于晶种上,减少蒸发器的结垢情况。

(2)强制循环蒸发器属成熟蒸发设备,在盐的热浓缩和蒸发结晶工程中常有应用。

(3)该技术目前应用于新疆东方希望燃煤电厂脱硫废水处理工程,一期工程于2016年3月投产,二期项目于2018年5月投运,投产后运行稳定。目前该技术已工程化应用于国内数十家电厂。

3.3 脱硫废水蒸发浓缩过程中氨的走向

因废水中的氨氮具有挥发性,为了有针对性地解决废水处理及综合利用过程中的异味问题,开展蒸发浓缩过程中氨的走向实验:取废水500mL,将pH值分别调节至5、8、12进行蒸馏,待冷凝水体积达到约400mL时停止蒸馏,然后对冷凝水及蒸馏浓缩液取样分析

肼类推进剂作为我国运载火箭常用的液体推进剂,随着我国航天事业的蓬勃发展,其用量大幅提升。推进剂废水主要在推进剂的生产和使用过程中产生,这类废水不仅水量大,而且毒性强,其中,偏二甲肼(UDMH)具有代表性,这是因为其属于剧毒物质,而且成分复杂,在氧化分解过程中会产生几十种中间产物,包括强致癌物亚硝基二甲胺,处理难度高,此类肼类推进剂废水排放之前必须进行合理有效处理。

偏二甲肼废水处理方法中臭氧氧化技术较为常用,这是因为臭氧一方面可直接攻击偏二甲肼,实现快速降解;另一方面可转化为以羟基自由基(·OH)为主的活性氧自由基,此自由基活性更高且对有机物无选择性,可将有机物去除。但在实际应用中发现,广泛采用的鼓泡式或射流式曝气方式,臭氧的利用率只有45%~65%,直接影响处理效率,而且额外的臭氧尾气处理装置,进一步增加处理成本。如何提升臭氧利用率,成为提升偏二甲肼废水处理效率的关键。

微纳气泡是一种微纳米级的气泡,由于气泡微小,其表现的特性与大气泡不同。例如:受表面张力的影响,气泡不仅上升过程直径减小,在水中湮灭,而且上升速度慢,水中停留时间长,这些特性有利于提升气体在溶液中的传质效率。此外,M.TAKAHASHI等研究发现,微纳气泡气液界面会聚集离子,在气泡破裂时产生一定量的·OH,利于水处理的进行。臭氧与微纳气泡方式结合是一种新式的水处理技术,在多个水处理领域得到应用,但目前还未在偏二甲肼废水处理中应用。

笔者以臭氧微纳气泡为研究对象,从运行压力、停留时间、臭氧利用率等方面研究臭氧微纳气泡与传统大气泡区别,将臭氧微纳气泡技术用于偏二甲肼废水处理,通过降解率、COD和氨氮去除率等进行处理效率评价,并系统探究紫外、H2O2和臭氧催化剂等耦合方式对臭氧微纳气泡技术的强化措施,最后,对各工艺的能耗进行评价。

1、物理化学处理技术

盐城一体化污水处理设备远程指导


1.1 高效絮凝浮选技术

高效絮凝浮选技术是某个学院和公司共同研发的一种新型石油化工废水循环利用技术,其主要是以玉米淀粉主要原料,混合少量丙烯酰,发生共聚后,会产生一种新型淀粉以及一种新的物质,这种新物质就是羧甲基淀粉基高分子系列环保絮凝剂,这种絮凝剂具有低成本、无毒、环保的优点,能够对石油化工废水高效处理,使得废水处理经济无污染。这种新型絮凝剂能够单独作用于废水,也可以和一些无机混凝剂配合使用,并且使用效果好,操作简单。这种处理ABS废水的方法,能够大大提升废水的可生化性,降低废水处理后续的负荷,减少线堵塞的发生,确保废水处理节能环保。

当前,我国石油开采过程中,很多油田已经进入开采的中后阶段,地下采出石油的含水量越来越高,所以含油废水的处理量也在逐年变多。尤其是3次采油中的高含油废水,在处理过程中,不仅会影响地面设施的正常运转,还会造成地层堵塞以及环境污染,同时还需消耗大量的原油,造成资源浪费。利用天然低价值产物部分来代替有机原料进行废水处理,有效打破了目前3次采油技术大面积的难题。这项创新技术中,应用风化煤原位聚合制备水处理剂的技术,不仅可以避免强酸和强碱对环境的影响,还能够提高废水处理效果,同时也是风化煤应用和水处理剂合成技术领域的第一个成就。另外,这项废水处理技术,具有生产工艺简单、操作方便、成本低、环保等优点,未来的发展前景十分宽阔。

1.2 磁性粉末净化技术

磁性粉末净化技术也是一种新的石油化工废水净化方法,且净化效果更好,成本更低。活性污泥处理技术已经在废水处理广泛应用,利用微生物的生长代谢消除废水中的有机污染物。而这些微生物在将污染物代谢之后,会形成一些球状絮体,这些絮体会沉入处理池的底部。这种处理技术在废水处理时,效果明显,但是它也存在一些缺点,有些细菌会存在污泥当中,形成簇团,这就影响污泥沉降,可能会影响处理设备的正常运行。另外,利用活性污泥法还有一个问题,就是细菌会在消耗污染物过程中,快速繁殖,这可能就会产生过多的污泥,需要额外花费一些费用来处理污泥。磁性粉末净化技术是在活性污泥中加入少量磁铁(Fe3O4)粉末,能够将活性污泥进行转化,可以循环利用。这样能够有效控制微生物的浓度,进而不会产生过多的污泥。这种处理技术在城市污水处理。石油化工废水处理中,可以有效消除废水中的有害有机物,还不会产生过剩的污泥,净化效果十分明显。

1.3 湿式氧化技术

为了有效提升有机难降解废水的处理效果,实现节能环保的目标,我国改进了日本的催化湿式氧化工艺技术,并制定出对应的安装全套设备,实现全流程的国产化,同时还构建了30t/d的催化剂生产线,总体消耗成本只是进口设备的50%~60%,并向国外出口。湿式氧化技术是借助氧化催化剂处理难降解的有机废水,进而使得处理后的水质能够满足国家相关排放标准,同时在废水处理过程中,氧化时所产生热能可以用作工艺热源或制蒸汽。湿式氧化技术和传统的原有生化处理以及焚烧法相对比,其优势更明显,不仅使用的设备简单,并且占地面积小,还不会产生影响环境的污染物,能够全面提升废水处理效果。

1.4 光催化技术

纳米颗粒光催化处理废水技术已被为比较先进的废水处理技术,但是在将TiO2应用于难降解的有毒有机物废水的产业化中,以环保为基础的开展处理,却一直存在发展的难题。某大学通过苦心研究,最终有效解决这个难题,实现TIO2晶须光催化处理难降解有毒有机物废水。这种技术是利用烧结法和离子交换法,来实现纳米级的连续光催化废水处理。利用TIO2晶须催化剂来提高废水处理效果。以TIO2晶须光催化降解印染废水,能够将废水中的COD含量有效减少,可以控制在50mg/L以下,并且色度小于40倍,将苯环等大分子有机化合物进行转化,成为无污染的烯烃类化合物。

2、生物处理技术

2.1 菌种选育技术

当前,在对石油化工产生的废水进行处理时,使用生物处理技术进行除油,基本都是选择“老三级"除油工艺,即隔油——级气浮和二级气浮——生化处理。但是这种除油工艺,能够将水中的重油除去,还需要采取二级气浮处理,由于二级气浮处理工艺操作复杂,运行成本高,管理难度大,所以可以用人工固定化工程菌来进行替代,实现废水除油目标。人工固定化工程菌除油装置是利用工程菌将水中的油料代谢成为二氯化碳和水,进而实现除油的目标。人工固定化工程菌除油装置不仅更新优化了传统除油工艺,还能够提高除油效率,取得较好的除油效果。

2.2 生物强化(QBR)技术

炼油碱渣废水是一种具有强碱性、高浓度、验生物降解的有机废水,所有炼油厂在油品电精制及脱硫醇生产过程中都会产生的这种废水,其中含有一些硫化物等有毒污染物。利用QBR技术能够将废水中的COD有效去除,并且去除率能达到90%以上。QBR技术属于一项专门的有机废水处理技术,主要是针对高浓度、验降解的有机废水,利用现代微生物培养技术,确保生物强化技术将专一性、活法10倍以上的容积负荷进行生化处理,进而有效消除废水中的高浓度有机污染物。这种技术的运行成本只是湿式催化、焚烧法的几分之一,整体操作简单,效果明显,并且不会产生多余的废弃物,避免产生二次污染。

2.3 MBR技术

MBR技术也是一种石油化工有废水处理技术,其废水处理原理是将生物降解和膜的高效分离作用相结合,从而实现废水处理目标。利用这种工艺处理废水,能够将微生物截留在生物反应器中,使所排放的废水中有机物含量大大减少,达到国家相关的排放标准。整个的废水处理工艺流程简单、操作方便,废水处理效果好,投资成本低,在石油化工废水处理中具有较好的应用效果。MBR废水处理技术,最早是在美国开始应用,进而逐渐在其他一些国家广泛应用,并且使用的范围和规模越来越大,处理量高达100003mg/L,并且这种技术适用于处理多种废水,不仅能处理石油化工废水,还可以处理水产加工废水、养殖废水等,并且废水处理的效果都十分明显。

基于MBR技术,设置PTA废水的高效组合工艺,能够有效降低石油化工废水处理的消耗成本,还能带来一定的经济收益。以MBR技术基础,融入化学催化氧化、商效菌株、生物固定化等技术,形成PTA废水组合处理工艺及装置,利用以活性炭作为主催化剂、空气为氧化剂,发挥催化氧化工艺,实现PTA废水处理,将废水中的COD含量有效减少,并且将废水中的一些有机污染物大分子,经过催化氧转变成一些有机小分子,提升废水可生化性。活性炭和多种粉末无机微生物一起固定化载华表,增加微生物的作用时间,再加上膜的利用,可以降低膜污染,延长膜的使用时间。利用这种工艺来对石油化工废水进行处理,可以全面提高处理后的水质质量。这种废水处理工艺,不仅处理效果好,还很环保、节约成本、减少资源消耗


在线咨询

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
版权所有©2024 常州天环净化设备有限公司 All Rights Reserved   
备案号:   sitemap.xml
技术支持:环保在线   管理登陆

扫码关注我们