公司产品系列

Product range

咨询热线:

0519-13961410015

产品中心/ PRODUCTS

我的位置:首页  >  产品中心  >  一体化污水处理设备  >  一体化废水处理设备  >  宜兴有机酸一体化废水处理装置工程方案

宜兴有机酸一体化废水处理装置工程方案

  • 产品型号:
  • 更新时间:2024-03-26

简要描述:宜兴有机酸一体化废水处理装置工程方案焦化废水是原煤高温干馏、煤气净化和化工副产品回收和精制过程中产生的工业废水,成分复杂,污染物含量高,毒性大,是一种典型的难降解工业废水。

产品详情

宜兴有机酸一体化废水处理装置工程方案

近年来,随着工农业的快速发展,许多含有大量生物难降解有机污染物未经处理直接排放和经过一定处理仍达不到排放标准的难处理废水对我国水资源造成严重污染。所谓“难降解有机污染物"是指被微生物分解时速度很慢、分解又不的有机物,一般包括多环芳烃、卤代烃、杂环类化合物、有机、有机磷农药、表面活性剂、有机染料等有机物。难降解有机污染物广泛存在于化工、印染、制药、造纸等行业废水中,这类物质具有长期残留性、生物蓄积性、半挥发性和高毒性等特性。生物处理法因具有经济、有效、无害的特点,应该是处理难降解有机废水的常用处理方法,但常规的生物处理手段很难将其处理到排放标准,尤其是对废水中难降解有机污染物和废水的色度去除效果很不理想。

微电解法是近30年来发展起来的一种新兴废水处理技术。微电解是利用金属腐蚀原理,形成原电池对废水进行处理的工艺,涉及到氧化还原、电富集、物理吸附和絮凝沉降等多种作用。微电解法处理废水的主要机理有以下两点:

① 在中性或偏酸性的环境中,电极本身及其所产生的H+、Fe2+等离子能与废水中许多组分发生氧化还原反应,将废水中的芳香族硝基化合物还原成相应的氨基化合物,提高废水的生化性;还可以还原重金属离子,降低毒性等。

② 絮凝作用。微电解反应生成的Fe2+及进一步氧化生成的Fe3+,在pH值较高的条件下 生成大量的Fe(OH)2和Fe(OH)3,产生混凝作用,从而去除废水中的油类和悬浮物。目前,工业化的微电解填料都是成型的规整填料,但是这些微电解填料在应用中存在投资大、填料易结块、易钝化、填料流失率高和更换费用高等诸多缺陷。

芬顿试剂氧化法是水处理高级氧化技术之一。它主要是利用Fe2+或紫外光、氧气等与H2O2之间发生链式反应,催化生成具有很高氧化能力的·OH,·OH不仅能氧化打破有机共轭体系结构,破坏发色基团,还可以使有机分子进一步矿化成CO2和H2O等小分子。另外,生成的Fe(OH) 3胶体具有絮凝和吸附功能,可去除水中部分悬浮物和杂质。芬顿氧化法可有效地处理难以生物降解的有机物的废水以及用于废水的脱色、除臭。

对硝基苯甲酸(p-NBA)是重要的医药、染料、兽药、感光材料等有机合成的中间体,尤其可作为偶氮染料中间体,用于合成工业染料。该品一旦排入自然环境中,对水体和大气可造成严重污染;对人体及动物的眼睛、皮肤、粘膜和上呼吸道产生刺激作用。p-NBA结构稳定,常规工艺很难去除。因此,将水体中的对硝基苯甲酸进行有效治理对改善生态环境、维护人与动物的健康具有重要意义。

目前,国内外学者对含有对硝基苯甲酸废水的主要处理手段是吸附法、光催化法、超声氧化法、电化学法、二氧化氯催化氧化法、臭氧氧化法及其组合工艺、厌氧-好氧生物法。其中吸附法是物理处理技术,操作简单,反应快;但材料成本高且有二次污染。光催化法、超声氧化法、电化学法、二氧化氯催化氧化法和臭氧氧化法及其组合工艺属于化学处理技术,反应速率快,耐受污染浓度高;但设备投资大、操作费用过高。厌氧-好氧生物法属于生物处理技术,易于操作和管理,建设费和维护费低,不引起二次污染;但是对硝基苯甲酸废水毒性大,对微生物有较强毒害作用,菌种筛选培养困难,处理效率过于缓慢。硫酸氧化法是一种化学处理方法,利用工业废硫酸,以废治废。废硫酸主要来源为钛白废硫酸、芳烃硝化废硫酸、染料废硫酸等,采用浓缩法进行处理。在浓缩过程中有机杂质会发生氧化、聚合等反应,转变为深色胶状物或絮状悬浮物,随着温度的进一步升高继而转化为二氧化碳、水及氮的氧化物,经浓缩处理后的硫酸可以循环利用。Song等采用精馏塔反应器对硝化废酸进行了回收浓缩的研究,在浓缩的过程中,随着温度的不断升高,硫酸的浓度逐渐增大,氧化性逐渐加强,硝化废酸中的硝基类芳香化合物在硫酸浓缩的过程中逐渐被硫酸氧化,最终化学需氧量(COD)的去除率达到了94%,硝基类有机污染物的去除率也都保持在了90%以上。

本文采用硫酸氧化法处理对硝基苯甲酸废水,考察了温度对釜液和馏分中COD的去除效果以及对釜液硫酸浓度的影响,研究了硫酸氧化法处理对硝基苯甲酸废水的反应机理,并采用发光细菌法评价了反应前后水样急性毒性的变化,为硫酸氧化法处理对硝基苯甲酸废水的实际应用提供技术支持和理论依据。

1、材料和方法

1.1 试验材料

实验所用p-NBA,购于国药化学试剂有限公司,配制5000mg/L的p-NBA废水,CODCr为11230mg/L。试验采用浓H2SO4(质量分数98%),发光细菌购自滨松光子学商贸(中国)有限公司。

1.2 试验方法

在通风橱中将100mL废水和100mL浓硫酸在烧杯中进行充分混合,混合过程中,将浓硫酸缓慢加入废水中,边加入边搅拌。待混合溶液冷却至室温,将其加入到塔釜的四口烧瓶,开启精馏实验装备,在不同温度下对馏分和釜液进行取样,并观察尾气回路在集气瓶中的颜色变化。上述实验中因气体现象未能有效观察到,故直接在100mL浓硫酸中加入3g的p-NBA药品,利用气体检测装置对硫酸氧化法的最终产物进行分析。

宜兴有机酸一体化废水处理装置工程方案


焦化废水是原煤高温干馏、煤气净化和化工副产品回收和精制过程中产生的工业废水,成分复杂,污染物含量高,毒性大,是一种典型的难降解工业废水。

而要实现对焦化废水的高效处理,就需要对焦化废水中的成分有全面的认识,这是靶向优化工艺、实现有效控制污染的基础。目前,常采用化学需氧量COD、生物需氧量BOD、氨氮、总有机碳以及总氮等指标实现对焦化废水污染程度的定量分析,这些指标主要用于废水处理过程中的质量控制以满足达标要求,均难以揭示溶解性有机物的来源以及特征污染物在废水处理过程中的变化。

目前,已有部分针对焦化废水溶解性有机物特征的具体研究。例如张万辉等人采用液液萃取辅以氧化铝硅胶净化的方法,并结合GC-MS分析技术,在焦化废水中检测到15类558种有机物。相较于COD、BOD等常规指标的研究,这种考察较为全面,但仍仅限于GC-MS能够分析的低沸点成分;贺润生等和徐荣华等采用紫外可见、红外光谱以及荧光光谱等分析手段分别对焦化废水的原水和最终出水的溶解性有机物特征进行了较为全面的研究,林冲等人则通过溶解性有机物的特征研究对臭氧流化床处理焦化废水的工艺效果进行评价。

现阶段的研究通常集中于对焦化废水进出水污染物的分布情况,而对废水处理过程中溶解性有机物(DOM)去除情况涉及较少。本文选取焦化废水处理的典型工艺A/O工艺,通过紫外、红光、荧光光谱表征研究污染物特性的变化,以期从新角度揭示焦化废水的净化机制和存在的问题,从而为实现废水处理技术的优化提供依据。

1、实验部分

1.1 样品采集

焦化废水以及各处理工段出水于2015年11月中旬取自河北省邯郸市某焦化厂废水处理系统,原水主要来自蒸氨废水和煤气水封水,此外还含有少量生活废水。废水处理系统的生化主体工艺为A/O工艺,取样位置包括调节池、气浮池、缺氧池、好氧池、二沉池以及混凝沉淀池出水口,每工段多点采样后收集混合,所取水样按照工段分别标号为a、b、c、d、e、f。水样取回后经0.45μm滤膜过滤,滤液立即放入4℃冰箱保存,并尽快完成相关指标分析。

1.2 分析方法

COD的测定采用快速消解法;氨氮的测定采用电极法;DOC的测定采用日本岛津TOC-VCPH型总有机碳分析仪。

紫外光谱分析采用Labtech的UV8100型紫外-可见分光光度计。将水样用超纯水稀释200倍保证所得光谱曲线处于线性区间内,以超纯水为参比进行紫外-可见光谱扫描。扫描波长范围为190~600nm,扫描间隔为1nm,样品池为1cm的石英比色皿。

傅立叶变换红外光谱(FT-IR)扫描采用PerkinElmer400型红外光谱仪。测试前参照文献对样品进行预处理:取水样10mL冷冻干燥48h成粉末,以空白样品建立光谱基线,薄膜法制备样品,然后取样扫描记录光谱数据。

三维荧光光谱扫描采用日本日立的U-4100&F7000型荧光光度计,测试前将样品稀释5000倍,以超纯水为空白水样,进行三维荧光光谱扫描。荧光光谱测定条件为:激发光源为150W氙灯,PMT电压为700V,发射波长扫描范围λEm为280~550nm,激发波长扫描范围λEx为220~400nm,扫描间隔为5nm,扫描速度为30000nm/min。将样品的荧光光谱减去超纯水的荧光光谱以去除拉曼散射,并将瑞利散射置0。


在线咨询

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
版权所有©2024 常州天环净化设备有限公司 All Rights Reserved   
备案号:   sitemap.xml
技术支持:环保在线   管理登陆

扫码关注我们